CA-GREET 1.8b versus 2.0 CI Comparison Table ## Approach and Limitations The following table compares fuel carbon intensities (CIs) from existing fuel pathways with estimates of corresponding CIs calculated with CA-GREET 2.0. The intent is to illustrate the likely CI changes that would occur as a result of the adoption of CA-GREET 2.0 under the proposed regulation. As such, the following comparisons are not "apples-to-apples": they are not intended to illustrate CA-GREET-driven CI differences for the same production facilities at the same point in time. In most cases, they compare CIs that were certified using CA-GREET 1.8b during the 2010-2015 period with estimated CA-GREET 2.0 CIs for the same fuel groups during the 2016-2020 period. The only departures from this basis of comparison were in the existing (1.8b) corn and sorghum ethanol CIs: these CIs were recalculated to reflect significant differences in plant energy consumption, ethanol and DGS yields, and the DGS-livestock-feed displacement ratio. Staff felt that adjusting for these differences was warranted. Overall, therefore, the following differences show the effects of time, and of overall improvements in the quality of life cycle inventory data, emission factors, and process efficiency data. CA-GREET 2.0 is a new life cycle analysis model. It is not a simple CA-GREET 1.8b update. Many of the differences affect individual fuels, but some affect all fuels. The differences in the latter category are the following: - Emissions from the use of electricity (as both a process and a transportation fuel) are now based on average generation mixes from the U.S. EPA's eGRID database. Marginal mixes were used previously. - Emission factors for combustion-powered equipment have been updated. - The contribution of denaturant to the CI of ethanol is now specific to the ethanol pathway. A contribution of 0.8 grams was previously used for all ethanol pathways. - Natural gas CIs include contributions from conventional and shale gas extraction, and include updated methane leakage rates. - Fuel transportation modes (pipeline, rail, truck) were updated with new emission factors. - The CI of Crude Oil production for California fuels is based on the latest OPGEE Model. - The lower heating values of several fuels (including natural gas) have been updated. - The use of chemicals and organisms in fuel production (enzymes, yeast, acids and bases, etc.) are now accounted for. | | | Existing Regulation | | | | | | Regulation | n | | | |------------------------|--|-----------------------|---------------|----------------------|------------------------------|-----------------------|---------------|----------------------|------------------------------|----------------|--| | | el (source of existing
CI in parentheses) | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Change
g/MJ | Main Drivers of Change | | Fuels | CARBOB
(CBOB001) | 98.38 | | 98.38 | 98.38 | 100.53 | | 100.53 | 100.53 | +2.15 | OPGEE-derived Crude Oil
CI higher (1.3g) Higher Tailpipe Emissions
(CH₄ and N₂O) (1g) | | Baseline Fu | ULSD (ULSD001) | 98.03 | | 98.03 | 98.03 | 102.76 | | 102.76 | 102.76 | +4.73 | OPGEE-derived Crude Oil
CI higher (1.3g) Higher Refining CI due to
lower refining efficiency
(3.4g) | | | CaRFG (calculated) | 98.95 | | 98.95 | 98.95 | 99.11 | | 99.11 | 99.11 | +0.16 | See CARBOB and Ethanol changes | | Natural Gas | North American NG – CNG (CNG002) | 68.00 | | 68.00 | 75.56 | 79.46 | | 79.46 | 88.29 | +12.73 | Higher Pipeline Energy
Intensity (3.8g) Higher WTT methane
leakage (3.7g) Higher Tailpipe Emission
(1.0g) | | North American Natural | North American NG - LNG (90% liquefaction eff.) (LNG002) | 72.38 | | 72.38 | 80.42 | 86.57 | | 86.57 | 96.19 | +15.77 | Higher Pipeline Energy
Intensity (3.8g) Higher WTT Methane
leakage (3.6g) Higher Tailpipe Emission
(2.8g) Higher Liquefaction CI
(3.4g) | | | | | Existing | Regulatio | n | | Proposed | Regulation | on | | | |------------|---|-----------------------|---------------|----------------------|------------------------------|-----------------------|---------------|----------------------|------------------------------|----------------|---| | | el (source of existing
Cl in parentheses) | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Change
g/MJ | Main Drivers of Change | | | Landfill Gas – CNG
(CNG003) | 11.26 | | 11.26 | 12.51 | 19.21 | | 19.21 | 21.34 | +8.83 | Higher RNG Processing CI (3.6g) Higher Tailpipe Emission (1g) Higher Pipeline Energy and Methane Leakage (1.4g) Larger Flaring Credit (-1.4g) | | Biomethane | Landfill Gas LNG
(90% liquefaction
eff.) (LNG007) | 15.56 | | 15.56 | 17.29 | 26.35 | | 26.35 | 29.28 | +11.99 | Higher Liquefaction CI (3.9g) Higher RNG Processing CI (3.7g) Higher LNG Tailpipe Emissions (CH₄ and N₂O) (2.8g) Larger Flaring Credit (-1.6g) | | | Dairy and feedlot
waste CNG
(CNG004) | 13.45 | | 13.45 | 14.94 | 30.13 | | 30.13 | 33.48 | | Unable to compare due to
different production
processes | | | | | Existing | Regulatio | n | | Proposed | Regulation | on |] | | |-----------|---|-----------------------|---------------|----------------------|------------------------------|-----------------------|---------------|----------------------|------------------------------|----------------|---| | | el (source of existing
CI in parentheses) | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Change
g/MJ | Main Drivers of Change | | | Soybean Biodiesel
(BIOD001) | 21.25 | 62.00 | 83.25 | 83.25 | 22.73 | 29.10 | 51.83 | 51.83 | -31.42 | Higher Biodiesel Production
CI due to accounting for
chemicals used (2.3g) Large Difference in Indirect
Land Use CI
(-33g) | | | Tallow Biodiesel (BIOD008 ¹) | 39.08 | | 39.08 | 39.08 | 32.83 | | 32.83 | 32.83 | -6.25 | Higher Biodiesel Production
CI due to accounting for
chemicals used (1.6g) Lower Rendering Energy
(-8g) | | Biodiesel | UCO Biodiesel
(BIOD004) | 18.72 | | 18.72 | 18.72 | 19.87 | | 19.87 | 19.87 | +1.15 | Higher Biodiesel Production
Cl due to accounting for
chemicals used (1.6g) Lower BD transport
(-0.5g) | | В | Canola Biodiesel
(BIOD006) | 31.99 | 31.00 | 62.99 | 62.99 | 35.73 | 14.50 | 50.23 | 50.23 | -12.76 | Higher Fertilizer Application (5.2g) Higher Biodiesel Production CI (1.6g) Large Difference in Indirect Land Use CI (-16.5g) | | | Corn Oil Biodiesel
(from Wet DGS)
(BIOD021) | 29.27 | | 29.27 | 29.27 | 28.68 | | 28.68 | 28.68 | -0.59 | Lower Corn Oil Extraction
Energy
(-0.9g) Higher BD production CI
(2g) Lower credit for DGS
production (-0.5g) | - ¹ For purposes of comparability, the certified CI for North American production was recalculated to reflect California production. | | | | Existing | Regulatio | n | | Proposed | Regulation | on | | | |------------------|--|-----------------------|---------------|----------------------|------------------------------|-----------------------|---------------|----------------------|------------------------------|----------------|---| | | el (source of existing
CI in parentheses) | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Change
g/MJ | Main Drivers of Change | | | Soybean RD
(RNWD001) | 20.16 | 62.00 | 82.16 | 82.16 | 22.01 | 29.10 | 51.11 | 51.11 | -31.05 | Higher Renewable Diesel
Production CI (2.2g) Large difference in Indirect
Land Use CI
(-33g) | | Diesel | Tallow RD
(RNWD002) | 39.33 | | 39.33 | 39.33 | 31.22 | | 31.22 | 31.22 | -8.11 | Lower Rendering Energy
(-9.8g) Higher Renewable Diesel
Production CI (1.4g) | | Renewable Diesel | UCO RD | | | | | 18.21 | | 18.21 | 18.21 | | No Comparison | | | Canola RD | | | | | 30.39 | 14.50 | 44.89 | 44.89 | | No Comparison | | | Corn Oil RD (from
Wet DGS) | | | | | 28.49 | | 28.49 | 28.49 | | No Comparison | | | | | Existing | Regulatio | n | | Proposed | Regulation | on | | | |------------|--|-------|---------------|----------------------|------------------------------|-----------------------|---------------|----------------------|------------------------------|----------------|--| | | Fuel (source of existing CI in parentheses) | | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Change
g/MJ | Main Drivers of Change | | | Sugar cane base
Case: no credit
(ETHS001) | 27.40 | 46.00 | 73.40 | 73.40 | 41.43 | 11.80 | 53.23 | 53.23 | -20.17 | Higher Cane Farming Energy (2.9g) Higher Fertilizer Application (3g) Higher Straw Burning (2g) Higher Denaturant (3g) Higher Ethanol Transport (to CA) emissions (3g) Lower ILUC (-28.2g) | | ne Ethanol | Sugar cane:
mechanized harvest
and power export
(ETHS002) | 12.40 | 46.00 | 58.40 | 58.40 | 31.09 | 11.80 | 42.89 | 42.89 | -15.51 | | | Sugarcane | Sugar cane:
mechanized harvest
harvesting only | | | | | 32.17 | 11.80 | 43.97 | 43.97 | | | | | Sugar cane: power export only (ETHS003) | 20.40 | 46.00 | 66.40 | 66.40 | 40.35 | 11.80 | 52.15 | 52.15 | -14.25 | | | | Existing Regulation | | | | | | Proposed | Regulation | n | | | |-----------------|--|-------|---------------|----------------------|------------------------------|-----------------------|---------------|----------------------|------------------------------|----------------|---| | | Fuel (source of existing CI in parentheses) | | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Change
g/MJ | Main Drivers of Change | | Sorghum Ethanol | Grain Sorghum
Ethanol; 100%
natural gas
(ETHG001 ²) | 58.51 | 30.00 | 88.51 | 88.51 | 67.29 | 19.40 | 86.69 | 86.69 | -1.82 | Lower Sorghum Farming
Energy (-4g) Higher Fertilizer Application
(11g) Larger DGS Credit
(-2.8g) Higher Ethanol Production
CI (1.5g) Higher Sorghum Transport
due to Loss during
Transport (2.9g) | | Corn Ethanol | Corn Ethanol; 100%
NG (ETHC004 ³) | 59.71 | 30.00 | 89.71 | 89.71 | 60.29 | 19.80 | 80.09 | 80.09 | -9.62 | Lower Farming Energy (-1.2g) Higher Ethanol Production CI (1g) Higher Denaturant (0.9g) Lower Indirect Land Use (-10.2g) | ² For purposes of comparability, the existing corn and sorghum Cls were adjusted to reflect significant differences between existing and current energy consumption, ethanol and DGS yields, and DGS-livestock-feed displacement ratios. ³ See footnote 2. | | | | Existing | Regulatio | n | | Proposed Regulation | | | | | |----------|---|-----------------------|---------------|----------------------|------------------------------|-----------------------|---------------------|----------------------|------------------------------|----------------|---| | | el (source of existing
Cl in parentheses) | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Change
g/MJ | Main Drivers of Change | | | Hydrogen gas;
central reforming of
NA-NG; liquefaction
and re-gasification
(HYGN001) | 142.20 | | 142.20 | 56.88 | 151.01 | | 151.01 | 60.40 | +3.52 | | | | Hydrogen gas;
central reforming of
NA-NG (HYGN002) | 133.00 | | 133.00 | 53.20 | 143.51 | | 143.51 | 57.40 | +4.20 | Higher North American NG as Feedstock Production CI (1.6g) Higher Gaseous Hydrogen Production CI (0.8g) Higher Hydrogen Liquefaction CI (0.5g) Higher Distribution and Storage CI (0.5g) | | Hydrogen | Hydrogen gas;
central reforming of
NA-NG; no
liquefaction and re-
gasification
(HYGN003) | 98.80 | | 98.80 | 39.52 | 105.65 | | 105.65 | 42.26 | 2.74 | | | | Hydrogen gas; on-
site reforming of NA-
NG; no liquefaction
and re-gasification
(HYGN004) | 98.30 | | 98.30 | 39.32 | 105.13 | | 105.13 | 42.05 | 2.73 | | | | Hydrogen gas from
on-site reforming of
2/3 NA-NG and 1/3
biomethane
(HYGN005) | 76.10 | | 76.10 | 30.44 | 89.84 | | 87.22 | 34.89 | 4.45 | | | | | Existing Regulation | | | | | Proposed Regulation | | | | | |---|--|-----------------------|---------------|----------------------|------------------------------|-----------------------|---------------------|----------------------|------------------------------|----------------|--| | Fuel (source of existing CI in parentheses) | | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Change
g/MJ | Main Drivers of Change | | Electricity | Average California
Electricity (ELC001) | 124.10 | | 124.10 | 36.50 | 105.16 | | 105.16 | 30.93 | -5.57 | Lower Coal Use in
Generation Mix (-5.5g) Higher Residual Oil Use
(1.2g) Lower Natural Gas Use (-
1.7g) | | | Existing Regulation | | | | | | Proposed | Regulation | n | | | |---------------------|--|-----------------------|---------------|----------------------|------------------------------|-----------------------|---------------|----------------------|------------------------------|----------------|--| | | el (source of existing
CI in parentheses) | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Direct
CI,
g/MJ | ILUC,
g/MJ | Total
CI,
g/MJ | EER-
Adjusted
CI, g/MJ | Change
g/MJ | Main Drivers of Change | | | | | | | | | | | | | Lower HSAD Process CI (-
22.7g) | | | Biomethane CNG derived from the | | | | | | | | | | Lower Compost Operations
CI (-2.3g) | | | high solids
anaerobic digestion
(HSAD) of food and | -15.29 | | -15.29 | -13.59 | -34.70 | | -34.70 | -30.84 | -17.25 | Higher Credit for Compost
Emissions Reduction
Factor (-7g) | | | green wastes
(CNG005) | | | | | | | | | | Higher Carbon Credit
Avoided (8.8g) | | uo | | | | | | | | | | | Higher CNG Tailpipe
Emissions (2.8g) | | Anaerobic Digestion | Biomethane CNG
from anaerobic
digestion of
wastewater sludge
at a small-to-
medium-sized
wastewater
treatment plant
(CNG021) | 30.51 | | 30.51 | 33.90 | 30.98 | | 30.98 | 34.42 | 0.52 | The Change is Minimal due to Electricity Mix (-0.5g) | | | Biomethane CNG
from anaerobic
digestion of
wastewater sludge
at a medium-to-
large-sized
wastewater
treatment plant
(CNG020) | 7.89 | | 7.89 | 8.77 | 7.80 | | 7.80 | 8.67 | -0.10 | The Change is Minimal due to Electricity Mix (-0.1g) |